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Constraints on deformation path from finite strain gradients
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Abstract

We present a methodology for analyzing finite strain gradients in high-strain zones in order to place constraints on the zone’s possible de-
formation path. To accomplish this, the high-strain zone is divided into several sub-zones, within each of which finite strain is described by
a single ellipsoid. Based on knowledge of the spatial and temporal evolution of deformation, strain observed in less deformed sub-zones is
then mathematically removed from more deformed sub-zones to calculate incremental finite strains. The mean kinematic vorticity number of
each of these increments must be constant if deformation was steady-state. We use the methodology to analyze two natural examples of
high-strain zones at different scales. Both natural examples have non-steady-state likely deformation paths, which may be a common charac-
teristic of high-strain zones. Although results of the methodology are not unique, identification of likely paths considerably narrows the range of
possible deformation paths. Consequently, useful kinematic information can be extracted from finite strain data even in instances where the de-
tailed spatial and temporal evolution of a high-strain zone cannot be determined conclusively.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Deformation; Finite strain analysis; Kinematics; Shear zone
1. Introduction

High-strain zones commonly display gradients in finite strain
that can provide insight into how rock deforms. For example, it
is possible to calculate zone offset amount from finite strain gra-
dients (e.g. Simpson, 1985; Zhang and Hynes, 1995), which
allows tectonic reconstructions (e.g. Giorgis et al., 2005). In
some instances, inferences about the kinematic history or defor-
mation path of the zone can be drawn from finite strain gradi-
ents. The orientation and magnitude of finite strain with
respect to the high-strain zone boundary, for example, can con-
strain the kinematics of the zone if steady-state deformation is
assumed (e.g. Tikoff and Fossen, 1995; Bailey and Eyster,
2003; Giorgis et al., 2004). For the purposes of this article we
refer to the term steady-state in the context of geometric
steady-state, indicating that the orientation of infinitesimal
straining remains fixed during deformation (e.g. Bobyarchick,
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1986) but that the bulk strain rate may vary. This term is distinct
from kinematic steady-state deformation, which refers to the sit-
uation where infinitesimal straining axes remain fixed and the
bulk strain rate remains constant (e.g. steady flow of Malvern,
1969, p. 143 and Furbish, 1997, pp. 168e9; steady-state defor-
mation of Provost et al., 2004). All kinematic steady-state defor-
mations are necessarily geometric steady-state.

Geological deformation is often assumed to be kinematic
steady-state principally because it is mathematically simpler
to consider than non-steady-state deformation. The problem
in evaluating this assumption stems from the difficulty inher-
ent in extracting information about deformation path from
the rock record (Means, 1976, pp. 25e30). In particular, a the-
oretically infinite variety of deformation paths may lead to the
same finite strain (e.g. Elliott, 1972; Passchier, 1988; Jiang and
White, 1995; Fossen and Tikoff, 1997). This non-uniqueness
has limited progress in our quantitative understanding of
high-strain zones.

We hypothesize that finite strain gradients can be used to
corroborate or falsify the assumption of geometric steady-state
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deformation. Our approach is to mathematically remove strain
observed in low-strain domains from that observed higher-
strain domains. This approach allows characterization of a se-
ries of incremental strain values (Fig. 1). If incremental finite
strains are all consistent with a single kinematic framework
then, as a first-order approximation, steady-state history can
be reasonably assumed. Further, with application of simple
well-established models of high-strain zone growth (e.g. Types
IeIII of Hull, 1988; Mitra, 1991; Means, 1995), finite strain
gradients can be analyzed and interpreted in order to provide
constraints on the most likely deformation path of high-strain
zones. By considering the spatial and temporal evolution of
strain accumulation, we can place constraints on the kinematic
history of a deformed zone. In this contribution, we apply the
approach to two different high-strain zones reported in the
literature, determine if the deformation was steady-state and
provide a reasonable interpretation for the kinematic evolution
of the zones.

2. Procedure

By understanding the spatial and temporal distribution of
straining in high-strain zones, the kinematic history recorded
in the rocks can be studied by mathematically removing strain
fields. Although a universal analysis procedure cannot be laid
out, the goals are straightforward to describe. (1) The geomet-
ric evolution of the high-strain zone is characterized. Observa-
tions of fabric symmetry and overprinting relationships may
be useful in distinguishing between various possible deforma-
tion geometry histories. (2) The zone is subdivided into com-
ponent sub-zones, each of which has roughly homogeneous
finite strain magnitude, shape, and orientation. (3) Finite strain
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Fig. 1. Incremental strains can be calculated from a finite strain gradient. In

this two-dimensional pure shear example, finite strain ellipses (in dark gray)

exhibit a strain gradient (Rf increases from left to right). Incremental strain el-

lipses (in light gray) can be calculated and describe the amount of deformation

(Rs) between observed finite strains. Deformation path in this case is geometric

steady-state (consistently pure shear, but the bulk strain rate may have varied).
is measured in each sub-zone. Note that simple measurement
of fabric type (e.g. S> L) and fabric orientation is necessary
but insufficient for this analysis. Rather, some measure of fi-
nite strain is necessary so that deformation can be studied
quantitatively rather than qualitatively. (4) Incremental strains
are calculated from the observed finite strain. Mathematical
methods for calculating these incremental strains vary slightly
based on the spatial and temporal evolution of straining within
the high-strain zone. (5) The mean kinematic vorticity number
of each increment of strain is calculated. (6) Finally, con-
straints are placed on the high-strain zone’s deformation
path based on consideration of the collected and calculated
information.

The following more detailed description of this analysis
procedure relies on terminology commonly used to describe
the spatial and temporal distribution of finite straining within
high-strain zones. First, to distinguish between observed de-
formation and the processes through which the deformation
in produced, we follow previous authors (e.g. Ramberg,
1975; Lister and Williams, 1983) and append the suffix -ing
to terms referring to processes. For example, simple shear
kinematics produce finite strain through progressive simple
shearing. Additionally, we use separate terms to describe
how the velocity field varies spatially and how at a particular
point in space the field is decomposed into different
components (e.g. simple shearing and pure shearing). We
use the term partitioning to describe the spatial variation of
the velocity field. Additionally, different parts of a deforming
region may simultaneously accumulate finite strain at different
rates and with different divisions of the velocity field into
components like shear-induced vorticity and spin (Lister and
Williams, 1983). We refer to this process as decomposition.
Partitioning and decomposition of the velocity field into
straining components have been interpreted from field
observations of high-strain zones (e.g. Tikoff and Teyssier,
1994; Jones and Tanner, 1995; Goodwin and Williams,
1996; Holdsworth et al., 2002; MacInnes and White, 2004)
and are probably an important mechanism for progressive
deformation of mechanically heterogeneous rocks (e.g. Trea-
gus et al., 1983; Treagus, 1988, 1993; Ishii, 1992; Simpson
and DePaor, 1993; Jiang and White, 1995; Goodwin and
Tikoff, 2002).

2.1. System characterization

Prior to any quantitative consideration of a high-strain
zone’s deformation path, the geometrical structure of the
zone must be investigated. Toward this end, we refer to the
temporal divisions of finite strain as increments and to the spa-
tial divisions as sub-zones.

Once the broad boundaries of the high-strain zone have
been recognized, the zone is divided up into sub-zones, each
of which records a roughly homogeneous finite strain magni-
tude and orientation. In addition to determining the finite
strain in each sub-zone, the geometry and dimensions of these
sub-zones should be determined as carefully as possible.
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Quantifying the finite strain in each sub-zone requires the
establishment of a coordinate system. Subsequent analysis is
almost invariably simplified if coordinate axes are fixed paral-
lel to the boundaries of the high-strain zone (see Section 2.2).
The finite strain in each sub-zone is now quantified with re-
spect to the imposed coordinate system. Observed finite strain
within each sub-zone should be described with a second-rank
tensor. All of these tensors should be in the same coordinate
system.

Note that identification of sub-zones depends on the scale at
which the increments of strain are to be analyzed. For exam-
ple, during analysis of a kilometer-wide high-strain zone, het-
erogeneous deformation at the meter scale or smaller may be
insignificant when considering the bulk deformation. Specific
circumstances may require special consideration. Knowledge
of wallrock deformation history is also important. Traditional
mathematical strain analysis of shear zones (e.g. Ramsay and
Graham, 1970; Ramsay, 1980) assumes that wallrock remains
undeformed; strain is assumed to accumulate only in the shear
zone. While this simplification may be technically inaccurate
in some cases (e.g. Jones et al., 1997), it may be a reasonable
approximation in other cases (e.g. Ramsay and Allison, 1979).
One particularly important consequence of assuming that
wallrock remains undeformed is that strain compatibility prob-
lems arise unless the high-strain zone deforms exclusively
through simple shearing (Ramsay, 1980; Robin and Cruden,
1994). Calculating the bulk strain accommodated by a high-
strain zone with heterogeneous non-simple shear kinematics
(i.e. when strain incompatibility exists) can only be accom-
plished in cases where both discrete and distributed compo-
nents of deformation can be thoroughly characterized
(Horsman and Tikoff, 2005).
2.2. Geometric evolution of high-strain zones

High-strain zones can change geometry and volume as time
and deformation progress (Means, 1995). Understanding this
evolution is essential to constraining the zone’s deformation
path because strain and fabric formed during early phases of
deformation can be modified or entirely overprinted during
subsequent phases of deformation. To simplify our presenta-
tion, terminology used to describe such evolution is described
here using three end-member geometries: constant-volume de-
formation, and localizing and delocalizing deformations (both
of which are changing-volume deformations in the sense that
the volume of deforming material varies as high-strain zone
boundaries migrate through the material). It is important to
note that the geometric evolution of a high-strain zone can
be considerably more complicated than the end-member pos-
sibilities considered in our examples below. More complicated
natural geometric evolution histories can, however, be ana-
lyzed using our methodology provided the zone’s evolution
can be established. In the Section 6, we will consider limita-
tions of our methodology pertinent to analyzing complicated
deformation histories. For the purposes of describing high-
strain zone geometric evolution, the following discussion as-
sumes planar zone boundaries and monoclinic symmetry.

2.2.1. Constant-volume deformation
Constant-volume deformation involves high-strain zone

boundaries that remain fixed in a material reference frame
but may migrate within a spatial reference frame (Type III
shear zone of Hull, 1988; Mitra, 1991; Means, 1995). In
Fig. 2, the constant-volume example shows a case in which
zone boundaries remain fixed in both material and spatial
localizing zone delocalizing zoneconstant volume

strain

strain

strain

strain

strain

strain

strain

strain

strain

strain

strain

strain

= actively deforming

constant kinematics (simple shear)

= not deforming

Fig. 2. Examples of the evolution of straining in three end-member types of high-strain zones: localizing, constant-volume, and delocalizing. All examples in this

case involve simple shear kinematics and result in the same final observed strain geometry. Shaded regions in the block diagrams and the strain profiles indicate

active deformation. Schematic cumulative strain profiles are shown for each zone at four stages of progressive deformation. These strain profiles describe the var-

iation in strain one would observe across the high-strain zone at that increment of time.
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reference frames throughout deformation. This example would
still be a constant-volume deformation if the outer edges of the
zone moved closer to one another during deformation as long
as this shortening was balanced by extension in another
direction.

Strain need not be homogeneous within a constant-volume
high-strain zone, as is shown in Fig. 2. Analysis of constant-
volume high-strain zones is, however, limited by the fact
that strain within each sub-zone must be considered
independently. Different finite strain observed in each sub-
zone can be interpreted to be the result of either steady-state
or non-steady-state heterogeneous partitioning of pure shear-
ing and simple shearing components of the bulk velocity field
throughout deformation history. It is impossible to distinguish
between these possibilities using solely finite strain evidence.
Consequently, analysis of constant-volume deformation zones
provides no conclusive information about the evolution of bulk
high-strain zone deformation path, and we instead focus on
changing-volume deformations in the analyses presented in
this paper.

2.2.2. Changing-volume deformation
Many high-strain zones have boundaries that migrate with

time in both the material and spatial reference frames
(Fig. 2). Migration of zone boundaries in the material reference
frame produces changes in the volume of actively deforming
rock. We use the term localization to describe a zone whose
boundaries migrate through material and grow closer together
during deformation, progressively localizing deformation and
decreasing the volume of actively deforming material (e.g.
White et al., 1980; Passchier, 1986; Wojtal and Mitra, 1988;
West and Hubbard, 1997; Type II shear zone of Means,
1984, 1995; Hull, 1988; Mitra, 1991). We use the term
delocalizing to describe the opposite case in which a high-
strain zone becomes less localized over time and the volume
of actively deforming material increases (e.g. Wojtal and
Mitra, 1988; Aoya and Wallis, 2003; Type I shear zone of
Means, 1984, 1995; Hull, 1988; Mitra, 1991). High-strain
zones here classified as localizing and delocalizing can also
be described with the genetic terms weakening and harden-
ing, respectively. However, because we are concerned only
with the description of high-strain zone geometry, we favor
the use of descriptive rather than genetic terms.

2.3. Calculation of incremental finite strains

The general procedure for calculation of incremental finite
strains from a thoroughly characterized finite strain gradient is
schematically illustrated in Fig. 3. For the purpose of demon-
strating the methodology, Fig. 3a shows a forward deformation
in which three increments of finite strain are superposed se-
quentially to produce a finite strain gradient. Each increment
affects a smaller area than the previous increment; this is a lo-
calizing deformation. Analysis of natural strain gradients nec-
essarily involves reciprocal deformation, in which observed
finite strain gradients are mathematically undeformed.
Fig. 3b shows the reciprocal deformation of the finite strain
gradient produced by progressive localization as shown in
Fig. 3a.

Specific analysis procedures vary for localizing and deloc-
alizing high-strain zones but in general, analysis involves
mathematical removal of finite strain observed in relatively lit-
tle-deformed sub-zones from the finite strain observed in more
deformed sub-zones. For the purposes of completeness, we
also discuss mathematical analysis of constant-volume high-
strain zones.
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Fig. 3. Comparison of forward and reciprocal deformation. Analysis of deformation path in naturally deformed rocks necessarily involves reciprocal deformation.

Straining regions are shown in gray. Inactive regions are shown in white. (a) Schematic representation of the geometric evolution of straining in a localizing two-

dimensional simple shear high-strain zone. Strain accumulates in progressively more localized sub-zones. (b) Schematic representation of how strain can be

removed from the observed high-strain zone to result in the initial condition.
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2.4. Mathematical framework

We assume that the finite strain observed in a given sub-
zone ðFnÞ of a high-strain zone accumulated through the su-
perposition of n increments of finite strain (Z1 through Zn):

Fn ¼ Zn$.$Z2$Z1: ð1Þ

where Fn and Zi (1� i� n) are second-rank tensors in the
same coordinate system. Superposition of finite strain incre-
ments (e.g. Fig. 3a) is mathematically manifested as matrix
multiplication. The removal of strain increments, or reciprocal
deformation (e.g. Fig. 3b), works similarly. This procedure as-
sumes each increment of deformation accumulated during
steady-state straining. The bulk deformation, however, may
or may not be steady-state. The increments of finite strain Zi

will either all have the same mean kinematic vorticity number
(see Section 2.5) in the case of steady-state deformation or, in
the case of non-steady-state deformation, will have different
mean kinematic vorticity numbers.

Calculation of incremental strain from a finite strain gradi-
ent depends on the geometric evolution of straining. Conse-
quently, different procedures must be used to isolate strain
increments in localizing and delocalizing high-strain zones.
These different procedures result in different incremental ten-
sors for localizing ðZLi

Þ and delocalizing ðZDi
Þ zones in some

cases. Derivation and conceptual explanation of Eqs. (2) and
(3) are given in Appendix A. In a localizing zone, isolation
of increments follows a consistent pattern:

ZL1
= F1 , (2a)

ZL2
= F2

• ZL1

−1 , (2b)

ZL3
= F3

• ZL1

−1
• ZL2

−1 , (2c)

…

ZLn
= Fn

• ZL1

−1
• ZL2

−1
• … • Z Ln−1

−1 . (2d)

Isolation of increments in a delocalizing zone follows a
different consistent pattern:

ZDn
= F1, (3a)

ZDn−1
= ZDn

−1
• F2 , (3b)

ZDn−2
= ZDn−1

−1
• ZDn

−1
• F3 , (3c)

…

ZD1
= ZD2

−1
• • … ZDn−1

−1
• ZDn

−1
• Fn. (3d)

In contrast, analysis of deformation zones of constant-vol-
ume (neither localizing nor delocalizing over time) follows
a different procedure. Strain within each sub-zone is assumed
to have accumulated in a steady-state manner, but each of
these component sub-zones may have had different kinematics
due to partitioning (Fig. 1). As all of the sub-zones were active
simultaneously throughout the bulk deformation, analysis of
one sub-zone provides no information about the deformation
history of other sub-zones, so each is analyzed independently
from the others.

2.5. Incremental vorticity determination

Once incremental deformation tensors have been calcu-
lated, the mean kinematic vorticity number of each incremen-
tal deformation is calculated. The term vorticity is used to
describe the instantaneous rate of rotation of material lines rel-
ative to the stretching of those lines in a viscous medium
(Truesdell, 1954; Means et al., 1980; Passchier, 1986; Means,
1994). Vorticity analysis provides information on the kine-
matic framework in which a deformed rock acquired its fabric
(Means et al., 1980; Passchier, 1988). For discussion on the as-
sumptions inherent in geological vorticity analysis and limita-
tions of such analysis see Jiang (1994), Jiang and White
(1995) and Tikoff and Fossen (1995, 1999).

In geology, vorticity is often described as the ratio between
the rate of simple shearing and the rate of pure shearing.
Values for the kinematic vorticity number W therefore vary
from W¼ 0 (pure shearing), through W¼ 1 (simple shearing),
to 1�W�N (super-simple shearing). Geologically meaning-
ful values of the vorticity number generally range from
0�W� 1 for bulk deformation. Super-simple shearing arises
from spinning flow regimes (Lister and Williams, 1983) and is
therefore important in porphyroclasts and -blasts at the micro-
structural scale (e.g. Simpson and DePaor, 1993; Jiang and
White, 1995) and perhaps at the outcrop scale (e.g. rotating
veins and other competent domains; Jiang and White, 1995)
but is probably rare at larger scales, with the notable exception
of rotating crustal blocks.

Because of the mechanical heterogeneity of rocks and the
finite nature of natural deformation, the true quantity of interest
in kinematic analysis of deformed rocks is the average vorticity
of a region over a period of time. This quantity incorporates the
concepts of both spatial averaging (e.g. Wb of Jiang, 1994) and
temporal averaging (e.g. mean Wn of Passchier, 1988; Wm of
Bailey and Eyster, 2003; Bailey et al., 2004). Because of the
explicitly instantaneous nature of Wb, we will use Wm through-
out this manuscript, keeping in mind that we are interested in
the bulk vorticity of a region (all components of a high-strain
zone) over a period of time.

If flow in the deformation increment of interest has been
steady-state, the instantaneous vorticity number Wk is equiva-
lent to the mean vorticity number Wm. Tikoff and Fossen
(1993, 1999) provide the following equation for the calculation
of the kinematic vorticity number from a finite deformation
matrix:

WmzWk¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
gyz

�2þðgxzÞ
2þ
�
gxy

�2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
�
lnðk1Þ2þlnðk2Þ2þlnðk3Þ2

�
þ
�
gyz

�2þðgxzÞ
2þ
�
gxy

�2
q :

ð4Þ
This equation assumes steady-state deformation during the

strain interval being quantified and therefore can be used to
calculate Wk for a truly steady-state deformation or to
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calculate Wm for a non-steady-state deformation. Note that this
equation also assumes that the finite strain tensor has been
rotated into a coordinate system defined relative to principal
tectonic directions such that the matrix is upper-triangular
(e.g. Flinn, 1979). An equation useful for calculating the kine-
matic vorticity number in more general flow regimes not
described by upper-triangular matrices (e.g. triclinic flow)
can be obtained by substituting Tikoff and Fossen’s (1995)
Eq. (8) into their Eq. (A9):
conclusively demonstrated, but any additional information is
useful in analyses of deformed rocks, in which evidence is
scant (Fossen and Tikoff, 1997).

3. Theoretical example

In order to demonstrate the procedure, we analyze a theoret-
ical high-strain zone. As shown in Fig. 4, the zone has
sub-vertical boundaries. For the purpose of demonstration,
WmzWk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
gzy� gyz

�2þðgxz� gzxÞ
2þ
�
gyx � gxy

�2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
�
lnðk1Þ2þlnðk2Þ2þlnðk3Þ2

�
þ
�
gxyþ gyx

�2þðgxzþ gzxÞ
2þ
�
gyzþ gzy

�2
q : ð5Þ
Determination of the kinematic vorticity number alone is
insufficient to uniquely characterize a non-plane-strain,
three-dimensional deformation (Tikoff and Fossen, 1999). In
order to distinguish between, for example, pure flattening
and pure constriction deformations (both with Wk¼ 0), some
qualitative description of fabric geometry must be considered
in addition to the aspect ratio and orientation of the finite
strain ellipsoid with respect to the shear plane.

2.6. Evaluation and interpretation of deformation path

After a high-strain zone has been thoroughly characterized
and analyzed, the implications of the incremental deformation
vorticities can be considered. The distinction between geomet-
ric steady-state and non-steady-state deformation paths is of
particular interest. A deformation path composed of strain in-
crements having different vorticities defines a non-steady-state
path. Note that, although localizing and delocalizing zones can
be analyzed in this manner, the steadiness of deformation in
constant-volume high-strain zones (neither localizing nor de-
localizing) cannot be evaluated from this analysis. Rather,
the calculated vorticity values in a constant-volume zone de-
scribe the mean vorticity in each sub-zone over the entire
length of finite deformation.

As described above, the complications inherent in interpret-
ing three-dimensional kinematic vorticity (Tikoff and Fossen,
1999) are such that simple comparison of kinematic vorticity
numbers between increments (for localizing or delocalizing
zones) or sub-zones (for constant-volume zones) is insufficient
to conclusively state whether or not those increments were pro-
duced along the same deformation path; strain and fabric data
must also be considered in order to distinguish between possible
kinematic boundary conditions described by the same kinematic
vorticity number (e.g. pure flattening and pure constriction).

Results of this analysis can be interpreted as possible con-
straints on the deformation path followed by a high-strain
zone. For example, evidence in a given high-strain zone of
an early low vorticity phase of deformation preceding later
high vorticity deformation limits the most likely deformation
path appreciably. The true deformation path cannot be
we assume that the spatial and temporal evolution of straining
within the zone is unclear. Consequently, we will analyze the
zone assuming both localizing and delocalizing end-member
deformation histories. In Section 3.3 we discuss the constraints
it is possible to place on the zone’s deformation path based on
consideration of both these histories.

We divide the high-strain zone into three sub-zones with in-
creasing observed strain, F1, F2, and F3. Strain within each
sub-zone is quantified and described within the coordinate sys-
tem shown in Fig. 4. Now that the high-strain zone has been
characterized, we calculate incremental strain based on the
localizing and delocalizing deformation histories.

3.1. Localizing analysis

We first analyze the high-strain zone assuming deformation
localized over time. The observed finite strain in the outermost
sub-zone is F1. Because this sub-zone experienced only a sin-
gle increment of deformation, the incremental deformation
matrix describing deformation in that sub-zone is simply the
finite strain observed in the sub-zone:

ZL1
¼ F1 ¼

2
4

1 0:5 0
0 1 0
0 0 1

3
5: ð6Þ

The finite strain recorded by the second sub-zone is F2.
This finite strain accumulated by the superposition of two in-
crements of deformation:

F2 ¼ ZL2
$ZL1

¼

2
4

1 0:8 0
0 1 0
0 0 1

3
5: ð7Þ

The incremental finite strain in this sub-zone can be calcu-
lated by removing the effects of deformation in the outermost
sub-zone:

ZL2
¼ F2$Z�1

L1
¼

2
4

1 0:3 0
0 1 0
0 0 1

3
5: ð8Þ

where Z�1
L1

is the matrix inverse of ZL1
.
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Fig. 4. Depiction and description of straining evolution in the theoretical high-strain zone as determined from localizing and delocalizing analyses. (a) Observed

finite strain tensors Fi for the zone’s three sub-zones. Bulk strain increases from i¼ 1 in the outer sub-zone to i¼ 3 in the innermost sub-zone. (b) Block diagram

showing the assumed initial condition of the high-strain zone at time t0, including the finite strain tensor F0. (c) Block diagrams showing the evolution of straining

in the high-strain zone assuming progressive localization and delocalization. Shaded sub-zones in each of the time slices shown (t1, t2, t3) indicate regions of active

deformation. Strain ellipses are shown on all faces to indicate the three-dimensional strain in each sub-zone. Position gradient tensors for incremental deformation

(ZLi
for localizing and ZDi

for delocalizing) are shown for each time slice. Note that the incremental deformations are different for the localizing and delocalizing

zones.
The finite strain recorded by the third sub-zone is F3. This
finite strain accumulated by the superposition of three incre-
ments of deformation:

F3 ¼ ZL3
$ZL2

$ZL1
¼

2
4

1 2 0
0 2 0
0 0 0:5

3
5: ð9Þ

Both ZL2
and ZL1

are known from analysis of the earlier
two sub-zones, so the third increment of finite strain can be
calculated:

ZL3
¼ F3$Z�1

L1
$Z�1

L2
¼

2
4

1 1:2 0
0 2 0
0 0 0:5

3
5: ð10Þ

Now that the increments of finite strain have been calcu-
lated for each sub-zone, the vorticity of these increments can
be used to place constraints on deformation path.

Determining a vorticity value for each increment of defor-
mation requires assumptions (e.g. monoclinic deformation)
described in the vorticity analysis section above. The mean
vorticity number within each sub-zone can be calculated
from its deformation matrix (position gradient tensor) using
Eq. (4). The mean vorticity numbers for the three increments
of deformation ZL1

, ZL2
, and ZL3

are Wm¼ 1, 1, and 0.51,
respectively. These results are shown in Fig. 5.

Fig. 5a is a Nadai/Hsu diagram (e.g. Nadai, 1963; Hsu,
1966; Hossack, 1968; Owens, 1974; Brandon, 1995) that plots
strain ellipsoid distortion ð3sÞ against shape ðnÞ. This diagram
is similar to the familiar Flinn plot (Flinn, 1956, 1961) but is
more informative in cases when it is desirable to separate the
evolution of ellipsoid distortion and shape. The finite strain pa-
rameter 3s is related to the octahedral unit shear of Nadai
(1963), which is a measure of the amount or work required
to distort a sphere ð3s ¼ 0Þ to a final shape ð3s > 0Þ. 3s is
defined as:

3s ¼
1ffiffiffi
3
p
�
ð31� 32Þ2þð32 � 33Þ2þð33� 31Þ2

�1
2; ð11Þ



263E. Horsman, B. Tikoff / Journal of Structural Geology 29 (2007) 256e272
b delocalizing

0

0

ν

εs

1

0.5

+1-1

oblateprolate

ZD1

F3

F1 & ZD3

F2

ZD2

a localizing

1

0.5

0

+1-1

0

εs

ν
prolate oblate

ZL3

F3

F1 & ZL1

F2

ZL2

c

increment of deformation

0.2

0.4

0.6

0.8

1

W
m

1 2 3

vorticity number evolution

Fig. 5. (a) Nadai/Hsu diagram of strain ellipsoid distortion ð3sÞ versus shapeðnÞ for sub-zones within the theoretical high-strain zone shown in Fig. 4. Symbols are

plotted for observed finite strain ellipsoids (Fi, crosses) and calculated incremental strain ellipsoids assuming localizing (ZLi
, open circles) deformation. (b) Nadai/

Hsu diagram for observed finite strain ellipsoids (Fi, crosses) and calculated incremental strain ellipsoids assuming delocalizing (ZDi , filled circles) deformation.

(c) Plot of mean kinematic vorticity number for each increment of deformation (1 is first, 3 is last) assuming the zone localized over time (open circles) or

delocalized over time (filled circles). Changing values indicate non-steady-state deformation.
where 3i are the natural logarithms of the principal stretches Si

of the strain ellipsoid. The ellipsoid shape is described by
Lode’s number n, where:

n¼ 232 � 31� 33

31 � 33

: ð12Þ

Values of n range from �1 (perfectly prolate) through
0 (plane strain) to þ1 (perfectly oblate).

3.2. Delocalizing analysis

Assuming the high-strain zone delocalized over time, anal-
ysis follows the pattern outlined in Eq. (3) above. In this case,
the final increment of deformation is recorded by the least
deformed (outermost) sub-zone:

ZD3
¼ F1 ¼

2
4

1 0:5 0
0 1 0
0 0 1

3
5: ð13Þ

ZD2
is calculated by removing the final increment of strain

from the middle sub-zone:
ZD2
¼ Z�1

D3
$F2 ¼

2
4

1 0:3 0
0 1 0
0 0 1

3
5: ð14Þ

The first increment of deformation is calculated by remov-
ing all of the temporally subsequent increments of strain from
the highest-strain sub-zone:

ZD1
¼ Z�1

D3
$Z�1

D2
$F3 ¼

2
4

1 0:4 0
0 2 0
0 0 0:5

3
5: ð15Þ

In this delocalizing zone analysis, the first increment of
deformation must have involved sinistral oblique divergence.
The mean vorticities of each of the incremental strain matrices
ZD1

, ZD2
, and ZD3

are Wm¼ 0.2, 1, and 1, respectively. These
results are shown in Fig. 5.

3.3. Deformation path interpretation

The vorticity results for the localizing and delocalizing
analyses (Fig. 5) suggest that the deformation path for the
zone was non-steady-state. In Fig. 5a the incremental
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ellipsoids ZL1
and ZL2

for localizing analysis plot on the plane
strain line ðn ¼ 0Þ, as expected for simple shear kinematics.
Similarly, the incremental ellipsoids ZD2

and ZD3
for delocal-

izing deformation plot on the plane strain line. However, the
results indicate that one increment of deformation is clearly
non-plane strain (ZL3

or ZD1
). These same observations are

clear when looking at the specific mean vorticity values
(Fig. 5c). In both cases, two increments of deformation
involved simple shear kinematics while the third increment
involved a significant pure shear component in addition to
a simple shear component. The temporal order of the different
kinematic boundary conditions, however, varies depending on
whether the zone localized or delocalized.

Simple observation of the incremental vorticity numbers is
insufficient to fully interpret the deformation path because of
the ambiguity inherent in three-dimensional vorticity analysis
(Tikoff and Fossen, 1999). Strain facies observations (Hansen,
1971) provide important information about deformation geom-
etry (Tikoff and Fossen, 1999). In this case, the prolate shape
of the ellipsoid (Fig. 4) in the innermost sub-zone indicates
constriction rather than flattening. This suggests that bulk
transtension rather than transpression produced the observed
strain.

4. Natural example 1: kilometer-scale analysis

Zhang and Hynes (1995) present three-dimensional finite
strain data from a km-scale high-strain zone in north-central
British Columbia. Their data describe strain within a deformed
Late Triassic volcanic breccia. They assume clasts within the
breccia behaved passively during a constant-volume mono-
clinic deformation. They used a coordinate system in which
the z-axis is perpendicular to the high-strain zone boundary
(unexposed but assumed planar and parallel to the well devel-
oped cleavage), the x-axis is horizontal within the shear plane,
and the y-axis points up-dip on the shear plane. Zhang and
Hynes (1995) divided the high-strain zone into three sub-
zones, each of which exhibits roughly homogeneous finite
strain shape and magnitude. They calculated a position gradi-
ent tensor for each of these sub-zones. To accomplish this they
assumed that finite strain in each of the sub-zones accumulated
due to simultaneous coaxial stretching parallel to three coordi-
nate axes and simple shearing parallel to the x-axis. Their
calculated position gradient tensors, in order from relatively
low-strain magnitude ðF1Þ to high magnitude ðF3Þ, are as
follows. Note that the calculations to four decimal places are
from Zhang and Hynes (1995).

F1 ¼

2
4

1:5891 0:8758 0
0 0:5422 0
0 0 1:1807

3
5; ð16Þ

F2 ¼

2
4

1:3460 1:3518 0
0 0:5940 0
0 0 1:2510

3
5; and ð17Þ
F3 ¼

2
4

0:6616 8:1025 0
0 2:7687 0
0 0 0:5511

3
5: ð18Þ

Zhang and Hynes (1995) attempted to reproduce their strain
data using a steady-state forward model. They were unsuc-
cessful because no monoclinic, constant-volume, steady-state
deformation path can move from the field of apparent flatten-
ing (F1 and F2) to the field of apparent constriction ðF3Þ.
Within the constraints of their assumptions (in particular,
monoclinic deformation), Zhang and Hynes’ data indicate
a non-steady-state deformation path. The analysis presented
here allows us to place additional constraints on the nature
of the non-steady-state deformation.

Based on fabric transposition evidence, Zhang and Hynes
(1995) suggest that deformation progressively localized in
the high-strain zone they characterized. Despite this assump-
tion, we analyze their data from both localizing and delocaliz-
ing zone perspectives. This generalized approach allows us to
confidently draw conclusions about the nature of the kinematic
evolution recorded by finite strain in the zone.

4.1. Localizing zone analysis

Calculation of incremental deformation tensors follows the
procedure outlined in Eq. (2) above for localizing high-strain
zones. If the rock was initially undeformed the incremental
position gradient tensors are:

ZL1
¼ F1 ¼

2
4

1:5891 0:8758 0
0 0:5422 0
0 0 1:1807

3
5; ð19Þ

ZL2
¼ F2$Z�1

L1
¼

2
4

0:8470 1:1250 0
0 1:0955 0
0 0 1:0595

3
5; and ð20Þ

ZL3
¼ F3$Z�1

L1
$Z�1

L2
¼

2
4

0:4915 12:5220 0
0 4:6611 0
0 0 0:4405

3
5: ð21Þ

By multiplying these incremental deformation tensors
together in the proper sequence (ZL1

first, ZL2
second, and

ZL3
third), it is possible to check that they produce the ob-

served F3 tensor:

ZL3
$ZL2

$ZL1
¼

2
4

0:6616 8:1025 0
0 2:7687 0
0 0 0:5511

3
5: ð22Þ

Again using Eq. (4), the mean vorticity numbers of the ZL1
,

ZL2
, and ZL3

incremental deformations are Wm¼ 0.63, 0.97,
and 0.93, respectively. These results are shown in Fig. 6.

4.2. Delocalizing zone analysis

The same observed finite strains can be analyzed assuming
they formed in an delocalizing high-strain zone. The mathe-
matical procedures for isolating the finite strain increments
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follow Eq. (3). In the case of a delocalizing high-strain zone,
the incremental strain tensors corresponding to Zhang and
Hynes’ (1995) strain gradient are as follows:

ZD3
¼ F1 ¼

2
4

1:5891 0:8758 0
0 0:5422 0
0 0 1:1807

3
5; ð23Þ

ZD2
¼ Z�1

D3
$F2 ¼

2
4

0:8470 0:2469 0
0 1:0955 0
0 0 1:0595

3
5; and ð24Þ

ZD1
¼ Z�1

D2
$Z�1

D3
$F3 ¼

2
4

0:4915 1:3385 0
0 4:6611 0
0 0 0:4405

3
5: ð25Þ

As with the localizing zone analysis, multiplying these ten-
sors together in the proper sequence (ZD1

first, ZD2
second,

and ZD3
third) produces the observed F3 tensor:
ZD3
$ZD2

$ZD1
¼

2
4

0:6616 8:1025 0
0 2:7687 0
0 0 0:5511

3
5: ð26Þ

However, in this case the mean vorticity numbers of each of
the incremental strain matrices ZD1

, ZD2
, and ZD3

are
Wm¼ 0.26, 0.67, and 0.63, respectively. These results are
shown in Fig. 6.

4.3. Deformation path evaluation

Both the localizing and delocalizing analyses demonstrate
that the observed deformation must be the result of non-
steady-state kinematics. Both analyses (Fig. 6) suggest the first
increment of finite strain ðZ1Þ had a significantly lower mean
vorticity than the second two increments (Z2 and Z3), which
requires non-steady-state deformation. The analyses’ parallel
recognition of an early, relatively low vorticity phase of defor-
mation suggests that this is a robust result; the deformation
path likely evolved from an early relatively low vorticity phase
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Fig. 6. (a) Nadai/Hsu diagram of strain ellipsoid distortion ð3sÞ versus shape ðnÞ for sub-zones within the high-strain zone described by Zhang and Hynes (1995).

Symbols are plotted for observed finite strain ellipsoids (Fi, crosses) and calculated incremental strain ellipsoids assuming localizing (ZLi
, open circles) deforma-

tion. (b) Nadai/Hsu diagram for observed finite strain ellipsoids (Fi, crosses) and calculated incremental strain ellipsoids assuming delocalizing (ZDi
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circles) or delocalized over time (filled circles). Changing values indicate non-steady-state deformation.
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into a subsequent phase with a significantly higher vorticity.
The change from broadly flattening strain in the outer sub-
zones (F1 and F2) to strongly constructional strain in the
more deformed sub-zone ðF3Þ is further evidence of a change
in kinematic boundary conditions.

5. Natural example 2: centimeter-scale analysis

Bhattacharyya and Hudleston (2001) conducted three-
dimensional strain analysis on cm-scale meta-gabbro high-strain
zones in the Seve Nappe Complex of the Upper Allochthon of the
northern Scandinavian Caledonides. The high-strain zones
analyzed are part of a complicated anastomosing three-
dimensional network that accommodated regional deforma-
tion. Because the high-strain zones that Bhattacharyya and
Hudleston (2001) analyzed are only a small part of a larger
network, extrapolating results to larger scales is not possible.
However, analyses like these provide important information
about high-strain zone kinematics in cases where the system
is relatively well understood.

The analysis presented here is concerned with Sample 1
from Bhattacharyya and Hudleston (2001), in which the
10-cm-thick high-strain zone is defined by deformation of
plagioclase aggregates (see their Fig. 8). Because the rela-
tionship between local and regional deformation was beyond
the scope of their paper, Bhattacharyya and Hudleston
(2001) defined a coordinate system in which the presumed
shearing direction was oriented 01 / 355 and the shear
plane was oriented 182/06W. By analyzing sub-zones of
approximately homogeneous strain Bhattacharyya and
Hudleston (2001) calculated 13 strain ellipsoids across the
high-strain zone by combining two-dimensional plagioclase
strain data (using the method of Wheeler, 1986) collected
using Rf=f analysis (e.g. Ramsay, 1967, pp. 202e211;
Lisle, 1977, 1979, 1985; Lisle et al., 1983). We consider
the results from ellipsoids 1 to 10 because they comprise
a complete profile across one side of the zone; ellipsoids
11e13 are located on the other side of the high-strain
zone and are not considered further here.

5.1. Localizing and delocalizing zone analyses

Bhattacharyya and Hudleston (2001) assumed that defor-
mation within the high-strain zone localized progressively
over time. Despite this assumption, unequivocal evidence of
the zone’s geometric evolution is lacking. We therefore ana-
lyzed the calculated position gradient tensors using both local-
izing and delocalizing zone mathematical frameworks.
Consequently, our analysis follows the frameworks outlined
in Eqs. (2) and (3) above, for localizing and delocalizing
zones, respectively.

We calculated finite stretch tensors (Ramsay, 1967, p. 124;
Elliott, 1972; Flinn, 1978; Means, 1994; Zhang and Hynes,
1995) for zones 1e10 from the eigenvalues and eigenvectors
of each sub-zone’s observed strain ellipsoid (provided by
P. Bhattacharyya, personal communication, 2005). Each of
these stretch tensors was rotated into the coordinate system de-
fined by the shear zone axes to produce an individual position
gradient tensor for each sub-zone (Appendix B). Ten incre-
mental position gradient tensors were then calculated from
the observed position gradient tensors for both localizing
and delocalizing zones (Appendix B). The mean vorticity
number of each incremental tensor was then calculated using
Eq. (4) above (Table 1 and Fig. 7).

5.2. Deformation path evaluation

As is clear from the vorticity results shown on Fig. 7, the fi-
nite strain within the high-strain zone cannot be explained with
a steady-state deformation path. Note, however, that the local-
izing zone analysis suggests that the early history of the defor-
mation was roughly steady-state. For the localizing analysis,
the mean vorticity number in increments 1e7 is approximately
Wm¼ 0.9 (þ/� 0.05) but falls to generally lower values in
increments 8e10. In contrast, for the delocalizing analysis
the mean vorticity number generally increases throughout
deformation. These results suggest that, if Bhattacharyya and
Hudleston’s (2001) assumption of a localizing zone is accurate,
this high-strain zone likely had an early high vorticity deforma-
tion history before recording a period of lower vorticity. How-
ever, if their assumption is incorrect it is difficult to confidently
conclude anything about the deformation path aside from its
non-steady-state nature. Regardless, the flattening nature of
the strain throughout the high-strain zone is consistent with
a general transpressional deformation path.

6. Discussion

The non-unique nature of deformation path has been dis-
cussed by many authors (e.g. Elliott, 1972; Passchier, 1988;
Jiang, 1994; Fossen and Tikoff, 1997), but most of the infinite
possible paths for a given observed deformation are unrealistic
(Provost et al., 2004). Recognition of even a few points along
a high-strain zone’s likely deformation path dramatically
limits the range of possible paths. The analyses we present
here demonstrate that even in instances where it is difficult
or impossible to determine the spatial and temporal evolution

Table 1

Mean vorticity numbers for Bhattacharyya and Hudleston’s (2001) strain data

Observed

tensor

Wm Incremental

tensor

Wm,

localizing

Wm,

delocalizing

F1 0.90 Z1 0.90 0.04

F2 0.90 Z2 0.88 0.27

F3 0.90 Z3 0.79 0.96

F4 0.87 Z4 0.91 0.34

F5 0.91 Z5 0.83 0.80

F6 0.88 Z6 0.92 0.51

F7 0.50 Z7 0.37 0.75

F8 0.39 Z8 1.00 0.80

F9 0.40 Z9 0.41 0.86

F10 0.42 Z10 0.60 0.90
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indicate non-steady-state deformation.
of straining in a high-strain zone, it is sometimes possible to
extract broad patterns of kinematic evolution from finite strain
gradients. This information is important because it dramati-
cally reduces the possible range of deformation paths followed
by the zone.

For example, in the case of the zone described by Zhang
and Hynes (1995), two main points pertinent to deformation
path analysis can be extracted from the finite strain data. First,
the zone followed a non-steady-state deformation path.
Second, that deformation path likely includes an early low
vorticity period of deformation followed by a later higher
vorticity period. Clearly, this information does not uniquely
identify the zone’s deformation path, but it does narrow con-
siderably the possible tectonic interpretations of the finite
strain data.
As the Zhang and Hynes example demonstrates, an addi-
tional product of this methodology is that it allows us to test
the common assumption of kinematic steady-state deformation
behavior. In both natural examples we analyzed, deformation
was clearly non-steady-state. Most natural shear zones proba-
bly form as a result of non-steady-state deformation (e.g.
Passchier, 1988; Jiang and White, 1995; Tikoff and Fossen,
1995; Montesi and Hirth, 2003) but few methodologies to
test this assertion have been presented.

Applicability of this methodology is limited by both the
simplified mathematical framework as presented here and by
the complexity and uncertainty inherent in analysis of natu-
rally deformed rocks. For simplicity’s sake, the methodology
is described using monoclinic kinematic models. However,
high-strain zones with triclinic symmetry can be analyzed in
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a similar manner provided the direction of simple shearing rel-
ative to the directions of pure shearing in each sub-zone can be
constrained. Information about the relative orientations of sim-
ple and pure shearing can be collected or inferred in some
high-strain zones (e.g. Lin et al., 1998) and the common as-
sumption of monoclinic deformation can be tested with obser-
vations of the high-strain zone. For example, if the maximum
asymmetry of shear sense indicators is observed on a plane
roughly perpendicular to both foliation and the direction of
simple shearing, deformation can be reasonably assumed
monoclinic (Jiang and White, 1995). Similarly, the presence
of stretching lineations that are neither parallel nor perpendic-
ular to the direction of simple shearing suggests triclinic defor-
mation symmetry. Note however that triclinic deformation
proceeding to Rs greater than w10 produces lineations with
apparent monoclinic symmetry (Jiang and Williams, 1998;
Lin et al., 1998).

Purely kinematic analyses such at that presented here must
be applied with caution because the mechanical feasibility of
results has not been rigorously addressed. It may be possible
to calculate deformation paths that are unlikely or impossible
for the mechanical properties of the rocks under consideration.
Mechanical heterogeneity is generally thought to strongly in-
fluence relative deformation behavior (e.g. Cobbold et al.,
1971; Cobbold, 1976; Treagus et al., 1983; Treagus, 1988,
1993; Ishii, 1992; Weijermars, 1992; Simpson and DePaor,
1993; Jiang and White, 1995; Goodwin and Tikoff, 2002),
but field observations do not always bear this out (e.g. Piazolo
and Passchier, 2002). In general, purely kinematic methodolo-
gies may be best suited to analysis of homogeneous or nearly
homogeneous bodies of rock. Because the distinction between
homogeneous and heterogeneous is often scale dependent
(Turner and Weiss, 1963, pp. 16e17), the inherent scale inde-
pendence of finite strain makes it an attractive and useful tool
on which to base an analysis methodology. However, we be-
lieve this method has the potential to shed light on feedback
relationships between straining and the mechanical evolution
of rocks. It is possible that rheological thresholds in the evolu-
tion of high-strain zones may be recognized from this purely
kinematic analysis. Further evaluation of such thresholds
must rely upon additional mechanical analysis.

An important source of error in our analysis results stems
from uncertainty in strain calculations (e.g. Dunnet and
Siddans, 1971; Cutler, 1985; Schultz-Ela, 1990; Yamaji,
2005). For the Zhang and Hynes example, we calculate that
25% error in the magnitude of the finite strain ellipsoid axes
results in roughly 5% change in the calculated mean vorticity
number. This calculation is highly situation dependent, but
provides a rough idea of the magnitude of the effects that
strain measurement error can produce.

Another limitation of the methodology and many geologi-
cal analyses of natural deformation is related to the difficulty
with defining boundaries between domains with gradational
contacts. Both Zhang and Hynes (1995) and Bhattacharyya
and Hudleston (2001) acknowledge that the boundaries be-
tween the sub-zones they defined are somewhat arbitrary in
that observed differences in fabric orientation or appearance
were used to estimate boundaries. These difficulties result in
apparent strain compatibility problems between sub-zones
and between the high-strain zone and wallrock. Additionally,
variations in sub-zone definition can produce different analysis
results. Many of these issues can, in theory, be resolved or
minimized by analyzing deformed systems at different spatial
scales.

The results we present also lead to the question of how
steady-state deformation should be defined when dealing
with the uncertainty inherent in consideration of rocks. For in-
stance, it is difficult to rigorously define a cut-off value in two
increments’ mean vorticity values above which those sub-
zones record non-steady-state kinematics. We consider the
changes in calculated mean vorticity numbers for both Zhang
and Hynes’ (1995) analysis (between increments 1 and 2, re-
gardless of localizing or delocalizing) and Bhattacharyya
and Hudleston’s (2001) analysis (between sub-zones 1e6
and 7e10) to suggest non-steady-state deformation. This issue
may be best considered on a case-by-case basis until we have
a firmer grasp of the range and significance of observed defor-
mation paths.

7. Conclusions

By understanding the spatial and temporal distribution of
straining in high-strain zones, the kinematic history recorded
in the rocks can be studied by mathematically removing strain
fields. The general analysis procedure is as follows. (1) The
geometric evolution of the high-strain zone is characterized.
(2) The zone is subdivided into component sub-zones, each
of which has roughly homogeneous finite strain magnitude,
shape, and orientation. (3) Finite strain is measured in each
sub-zone. (4) Incremental strains are calculated from the ob-
served finite strain using equations for localizing or delocaliz-
ing zones. (5) The mean kinematic vorticity number of each
strain increment is calculated. (6) Using a combination of
observations (strain facies, fabric orientation) and calculated
results (incremental deformation tensors), the zone’s likely
deformation path is considered.

Knowledge of the spatial and temporal evolution of strain-
ing within the high-strain zone is an essential prerequisite to
constraining possible deformation paths. Although we discuss
analysis procedures for three end-member geometric straining
histories, more complicated histories can be analyzed provided
that the straining history can be worked out. However, even in
cases where the spatial and temporal evolution of strain is
difficult or impossible to decipher, it is sometimes possible
to determine some basic information about high-strain zone
kinematics like the presence or absence of a steady-state kine-
matic history.

The analysis produces non-unique results. However, the
purpose of strain gradient analysis is to place constraints on
possible deformation paths rather than to identify the true
path. Although an infinite number of possible deformation
paths could theoretically have produced a given observed
strain gradient, some paths are more likely than others and
any constraints we can place are beneficial and useful.
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Appendix A. Derivation of Eqs. (2) and (3)

The different ways in which straining evolves spatially in lo-
calizing and delocalizing high-strain zones require slightly differ-
ent procedures for isolating increments of finite strain. Both
procedures, however, involve successively removing increments
of strain observed in relatively little-deformed sub-zones from
strain observed in more deformed sub-zones. The different proce-
dures sometimes result in different incremental tensors for local-
izing ðZLi

Þ and delocalizing sub-zones ðZDi
Þ. Note also that

similar procedures can be used to examine more complicated
straining histories than those discussed in this manuscript.

For the localizing analysis, the procedure can be conceptual-
ized by first recalling that the outermost sub-zone in a localizing
high-strain zone ðF1Þ records only the first increment of deforma-
tion ðZL1

Þ, so ZL1
¼ F1. The adjacent sub-zone ðF2Þ records both

the first and second increments of deformation (ZL1
and ZL2

);

F2 ¼ ZL2
$ZL1

ðA1Þ
The second increment of deformation is calculated by

isolating ZL2
in Eq. (A1). This goal can be accomplished by

multiplying both sides of Eq. (A1) by Z�1
L1

, the matrix inverse
of ZL1

:

F2$Z�1
L1
¼ ZL2

$ZL1
$Z�1

L1
; ðA2aÞ

which simplifies to:

F2$Z�1
L1
¼ ZL2

: ðA2bÞ
Sub-zone F3 records three increments of deformation:

F3 ¼ ZL3
$ZL2

$ZL1
: ðA3Þ

The third increment of deformation is calculated by isolat-
ing ZL3

in Eq. (A3). Again, this can be accomplished by
sequentially removing increments of deformation already cal-
culated. In this case, ZL1

is removed before ZL2
:

F3$Z�1
L1
¼ ZL3

$ZL2
$ZL1

$Z�1
L1
; ðA4aÞ

which simplifies to:

F3$Z�1
L1
¼ ZL3

$ZL2
: ðA4bÞ

To isolate ZL3
the procedure is followed once more using

the inverse of ZL2
:

F3$Z�1
L1

$Z�1
L2
¼ ZL3

$ZL2
$Z�1

L2
; ðA5aÞ

which simplifies to:

F3$Z�1
L1

$Z�1
L2
¼ ZL3

: ðA5bÞ
The pattern can be followed to isolate increments of

deformation in a localizing high-strain zone composed of
any number of increments.

Deriving Eq. (3), which describes how to calculate incre-
ments of finite strain in a delocalizing high-strain zone, is
again accomplished by progressively isolating strain incre-
ments of interest. However, the strain evolution pattern in a
delocalizing zone differs from that in a localizing zone and
therefore requires a slightly different isolation procedure. Re-
call that in a delocalizing high-strain zone that formed through
the superposition of an arbitrary number of increments ZDi

(for 1� i� n), the outermost sub-zone ðF1Þ records only the
final increment of deformation ðZDn

Þ. Thus, ZDn
¼ F1. The

adjacent sub-zone F2 records both the last and penultimate
increments of deformation:

F2 ¼ ZDn
$ZDn�1

: ðA6Þ

ZDn�1
is isolated by multiplying both sides of Eq. (A6) by Z�1

Dn
.

The non-commutative nature of matrix multiplication requires
left multiplication in this case:

Z�1
Dn

$F2 ¼ Z�1
Dn

$ZDn $ZDn�1
; ðA7aÞ

which simplifies to:

Z�1
Dn

$F2 ¼ ZDn�1
: ðA7bÞ

Sub-zone F3 records the final three increments of
deformation:

F3 ¼ ZDn
$ZDn�1

$ZDn�2
: ðA8Þ

ZDn�2
is isolated by sequentially multiplying both sides of Eq.

(A6) by Z�1
Dn

and Z�1
Dn�1

. In this case ZDn
is removed before

ZDn�1
:

Z�1
Dn

$F3 ¼ Z�1
Dn

$ZDn $ZDn�1
$ZDn�2

; ðA9aÞ

which simplifies to:

Z�1
Dn

$F3 ¼ ZDn�1
$ZDn�2

: ðA9bÞ
To isolate ZDn�2

, the procedure is followed once more using
the inverse of ZDn�1

:

Z�1
Dn�1

$Z�1
Dn

$F3 ¼ Z�1
Dn�1

$ZDn�1
$ZDn�2

; ðA10aÞ

which simplifies to:

Z�1
Dn�1

$Z�1
Dn

$F3 ¼ ZDn�2
: ðA10bÞ

The pattern can be followed to isolate increments of defor-
mation in a delocalizing high-strain zone composed of any
number of increments.



270 E. Horsman, B. Tikoff / Journal of Structural Geology 29 (2007) 256e272
Appendix B. Finite and incremental position gradient tensors for Bhattacharyya and Hudleston (2001)

1.14    0      0.47
   0    0.95     0
   0      0      0.94

F1 =

F3 =

F4 =

F5 =

F6 =

F7 =

F8 =

F9 =

F10 =

1    0    0
0    1    0
0    0    1

F0 =

ZL2 =

ZL3 =

ZL4 =

ZL5 =

ZL6 =

ZL7 =

ZL8 =

ZL9 =

ZL10 =

ZD2 =

ZD3 =

ZD4 =

ZD5 =

ZD6 =

ZD7 =

ZD8 =

ZD9 =

ZD10 =

Observed
finite strain

Calculated
incremental

strain - localizing

Calculated
incremental

strain - delocalizing

F2 =
1.14    0      0.47
   0    0.95     0
   0      0      0.94

1.21    0      0.88
   0    1.12     0
   0      0      0.81

1.21    0      0.77
   0    1.09     0
   0      0      0.78

1.16    0      0.92
   0    1.19     0
   0      0      0.82

1.15    0      0.77
   0    1.15     0
   0      0      0.79

1.82    0      0.86
   0    1.43     0
   0      0      0.42

1.81    0      0.63
   0    1.40     0
   0      0      0.42

1.89    0      0.68
   0    1.32     0
   0      0      0.42

1.74    0      0.68
   0    1.47     0
   0      0      0.41

 1.00     0    -0.13
    0    0.97     0
    0       0     0.97

0.96    0      0.23
   0    1.09     0
   0      0      1.05

0.99    0     -0.17
   0    0.97     0
   0      0      0.96

1.58    0     -0.45
   0    1.25     0
   0      0      0.53

0.99    0     -0.55
   0    0.98     0
   0      0        1

1.05    0      0.05
   0    0.94     0
   0      0      0.99

0.92    0      0.14
   0    1.12     0
   0      0      0.98

ZD1 =
0.92    0      0.01
   0    1.12     0
   0      0      0.98

1.05    0      0.03
   0    0.94     0
   0      0      0.99

0.99    0     -0.13
   0    0.98     0
   0      0      1.00

1.58    0      0.40
   0    1.25     0
   0      0      0.53

0.99    0     -0.10
   0    0.97     0
   0      0      0.96

0.96    0      0.09
   0    1.09     0
   0      0      1.05

1.00    0     -0.07
   0    0.97     0
   0      0      0.97

1.06    0      0.42
   0    1.18     0
   0      0      0.86

1.14    0      0.47
   0    0.95     0
   0      0      0.94

1.06    0      0.41
   0    1.18     0
   0      0      0.86

   1.00     0     0.00
      0    1.00      0
      0       0     1.00

ZL1 =
1.14    0      0.47
   0    1.00     0
   0      0      0.86

   1.00     0     0.00
      0    1.00      0
      0       0     1.00
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